Calculates the Renyi entropy, a generalization of Shannon entropy parameterized by α. Different α values emphasize different aspects of the distribution: α→0 emphasizes rare events, α=1 recovers Shannon entropy, α→∞ emphasizes the most probable event. Useful for risk-sensitive information measures in finance.
Use Cases:
Formula: H_α(X) = (1/(1-α)) log(Σ p(x)^α)
Credits: 5 credits per request (Pro Tier)
API key for authentication. Get your key at https://finceptbackend.share.zrok.io/auth/register
Discrete probability distribution (must sum to 1)
[0.5, 0.3, 0.15, 0.05]Renyi parameter (α=0: max-entropy, α=1: Shannon, α=2: collision entropy, α→∞: min-entropy)
2
Logarithm base for entropy calculation
2.718281828459045