Computes posterior (updated) returns by combining market equilibrium with investor views using Bayesian inference. Returns optimal portfolio weights based on the posterior distribution.
Use Cases:
Mathematical Background: Posterior returns: E[R] = [(τΣ)^-1 + P^T Ω^-1 P]^-1 [(τΣ)^-1 Π + P^T Ω^-1 Q]
Where Π is equilibrium returns, P is the picking matrix, Q is views, and Ω is view uncertainty.
Credits: 5 per request
API key for authentication. Get your key at https://finceptbackend.share.zrok.io/auth/register
Asset covariance matrix (annualized)
[
[0.04, 0.006, 0.008, 0.01],
[0.006, 0.09, 0.012, 0.015],
[0.008, 0.012, 0.0625, 0.018],
[0.01, 0.015, 0.018, 0.16]
]Market capitalizations for each asset
[
5000000000,
3000000000,
2000000000,
1000000000
]Market risk aversion parameter
2.5
List of investor views to incorporate. Can be empty for pure equilibrium.
[
{
"type": "absolute",
"asset": 0,
"value": 0.09,
"confidence": 0.7
},
{
"type": "relative",
"asset_long": 1,
"asset_short": 2,
"value": 0.03,
"confidence": 0.6
}
]